Tìm m để parabol \(\left( P \right):\,\,y = {x^2} - 2\left( {m + 1} \right)x + {m^2} - 3\) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\) sao cho \({x_1}{x_2} = 1\). A. \(m = 2\) B. Không tồn tại m C. \(m = - 2\) D. \(m = \pm 2\)
Đáp án đúng: A Giải chi tiết:Xét phương trình hoành độ giao điểm: \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 3 = 0\,\,\left( * \right)\). Để (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\)thì phương trình (*) có 2 nghiệm phân biệt. Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - {m^2} + 3 = 2m + 4 > 0 \Leftrightarrow m > - 2\). Khi đó theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 2\\{x_1}{x_2} = {m^2} - 3\end{array} \right.\) Theo đề bài ta có \({x_1}{x_2} = 1 \Leftrightarrow {m^2} - 3 = 1 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\left( {tm} \right)\\m = - 2\,\,\left( {ktm} \right)\end{array} \right.\) Chọn đáp án A.