Ta có
$F(x) = \int f(x) dx = \int \dfrac{x^2+1}{x} dx$
$= \int \left( x + \dfrac{1}{x}\right) dx$
$= \int x dx + \int \dfrac{1}{x} dx$
$= \dfrac{x^2}{2} + \ln|x| + c$
Lại có $F(1) = \dfrac{3}{2}$ nên ta có
$\dfrac{1}{2} + 0 + c = \dfrac{3}{2}$
$<-> c = 1$
Do đó
$F(x) = \dfrac{x^2}{2} + \ln|x| + 1$