Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}a){4^x} = {8^4}\\ \Leftrightarrow {\left( {{2^2}} \right)^x} = {\left( {{2^3}} \right)^4}\\ \Leftrightarrow {2^{2x}} = {2^{12}}\\ \Rightarrow 2x = 12\\ \Rightarrow x = 6\\b){4^x} = {32^{24}}\\ \Leftrightarrow {2^{2x}} = {\left( {{2^5}} \right)^{24}}\\ \Leftrightarrow {2^{2x}} = {2^{100}}\\ \Leftrightarrow 2x = 100\\ \Rightarrow x = 50\\c){8^x} = {16^{12}}\\ \Leftrightarrow {2^{3x}} = {\left( {{2^2}} \right)^{12}} = {2^{24}}\\ \Leftrightarrow 3x = 24\\ \Rightarrow x = 24:3\\ \Rightarrow x = 8\\d)\,{16^x} = {32^8}\\ \Leftrightarrow {\left( {{2^4}} \right)^x} = {\left( {{2^5}} \right)^8}\\ \Leftrightarrow {2^{4x}} = {2^{40}}\\ \Rightarrow 4x = 40\\ \Rightarrow x = 40:4\\ \Rightarrow x = 10\\e)\,{32^x} = {16^{10}}\\ \Leftrightarrow {2^{5x}} = {2^{40}}\\ \Rightarrow 5x = 40\\ \Rightarrow x = 40:5\\ \Rightarrow x = 8\end{array}\)