tìm x \(\sqrt{9\left(x-1\right)}=21\) \(\sqrt{4\left(x-1\right)^2}-6=0\) \(\sqrt{\left(x-5\right)^2}=8\)
\(\sqrt{\left(2x-1\right)^2}=3\)
\(\sqrt{\left(2x+3\right)^2}=3\)
\(\sqrt{x^2-4x+4}=2x-3\)
Ta có \(a,\sqrt{9(x-1)}=21 \)
<=> \(3\sqrt{x-1}=21 \)
<=> \(\sqrt{x-1}=7 \)
<=>\(x-1=49\)
<=>x=50
b, \(\sqrt{4(x-1)^2}-6=0 \)
<=>\(2|x-1|-6=0\)
<=>\(|x-1|=3\)
<=>x=4 hoặc x=-2
c,\(\sqrt{(x-5)^2}=8 \)
<=>|x-5|=8
<=>x=-3 hoặc x=13
d,\(\sqrt{(2x-1)^2}=3 \)
<=>|2x-1|=3
=> x=2 hoặc x=-1
e, \(\sqrt{(2x+3)^2}=3 \)
<=>|2x+3|=3
=>x=0 hoặc x=-3
f, \(\sqrt{x^2-4x+4}=2x-3 \)
<=>\(\sqrt{(x-2)^2}=2x-3 \)
<=>|x-2|=2x-3
Với x-2=2x-3
=>x-1=0
<=>x=1
Với 2-x=2x-3
=>x=\(\frac{5}{3}\)
Tìm x:
³\(\sqrt{1-2x^2\:}\) + 3 = 0
Giải phương trình : \(\sqrt{x-2}+\sqrt{10-x}=4.\)
Tính giá trị của biểu thức :
\(\dfrac{1}{2+\sqrt{3}}\)+\(\dfrac{1}{2-\sqrt{3}}\)
rút gọn biểu thức
\(\dfrac{1}{\sqrt{x}+1}+\dfrac{x}{\sqrt{x}-x}\)
\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
Cho 3 số x, y, z dương TM: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). CMR:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
giải phương trình :
\(\sqrt{10-x}\) + \(\sqrt{x+3}\) = 5
giải phương trình
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
cho biểu thức.\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\). Hãy tính tổng S=x+y
cho biểu thức
A=\(\dfrac{\sqrt{x}\left(\sqrt{x^3-1}\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) x>0,x≠1
a.Rút gọn biểu thức A
b.Tìm x để giá trị A=\(\dfrac{3}{4}\)
a,\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) =2
b,\(\sqrt{3x^2-4x}=2x-3\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến