\(\begin{array}{l}
1)\quad y = \sin\sqrt{\dfrac{1+x}{1-x}}\\
\text{Hàm số xác định}\\
\Leftrightarrow \dfrac{1+x}{1-x}\geqslant 0\\
\Leftrightarrow \left[\begin{array}{l}\begin{cases}1 + x \geqslant 0\\1 - x >0\end{cases}\\\begin{cases}1+ x \leqslant 0\\1 - x <0\end{cases}\end{array}\right.\\
\Leftrightarrow -1 \leqslant x < 1\\
\text{Vậy}\ D = [-1;1)\\
2)\quad y = \sqrt{\dfrac{2 + \cos x}{1 + \cos x}}\\
\text{Hàm số xác định}\\
\Leftrightarrow 1 + \cos x\ne 0\\
\Leftrightarrow \cos x \ne - 1\\
\Leftrightarrow x \ne \pi + k2\pi\quad (k\in\Bbb Z)\\
\text{Vậy}\ D = \Bbb R\backslash\{\pi + k2\pi\ \Big|\ k\in\Bbb Z\}\\
3)\quad y = \dfrac{\cot x}{\cos x - 1}\\
\text{Hàm số xác định}\\
\Leftrightarrow \begin{cases}\sin x \ne 0\\\cos x \ne 1\end{cases}\\
\Leftrightarrow \begin{cases}x \ne k\pi\\x \ne k2\pi\end{cases}\\
\Leftrightarrow x \ne k\pi\quad (k\in\Bbb Z)\\
\text{Vậy}\ D = \Bbb R\backslash\{k\pi\ \Big|\ k\in\Bbb Z\}
\end{array}\)