a ) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x^3+3x^2+y^3+5y^2-\left(x^3+y^3\right)=0\)
\(\Leftrightarrow3x^2+5y^2=0\)
Do \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\5y^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow3x^2+5y^2\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2=0\\5y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(x=0;y=0\)
b )\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(-16\left(x^3-y\right)=32\)
\(\Leftrightarrow\left[\left(2x\right)^3-y^3\right]+\left[\left(2x\right)^3+y^3\right]-16x^3+16y=32\)
\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16y=32\)
\(\Leftrightarrow16y=32\)
\(\Leftrightarrow y=2\)
Vậy \(y=2\)