Đáp án:
Ta có: `(2x-1)^(2020)>=0; |x+y|>=0`
`=> (2x-1)^(2020)+|x+y|>=0`
Mà `(2x-1)^(2020)+|x+y|<=0`
Dấu "=" xảy ra `<=> `
$\left\{\begin{matrix}(2x-1)^(2020)=0& \\|x+y|=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}2x-1=0& \\x+y=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=\dfrac{1}{2}& \\x=-y& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=\dfrac{1}{2}& \\y=-\dfrac{1}{2}& \end{matrix}\right.$