$$\eqalign{
   & a)\,\,y = {3 \over {2\cos x}}  \cr 
   & DKXD:\,\,\cos x \ne 0 \Leftrightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)  \cr 
   &  \Rightarrow D = R\backslash \left\{ {{\pi  \over 2} + k\pi ;\,\,k \in Z} \right\}  \cr 
   & b)\,\,y = cot\left( {2x - {\pi  \over 4}} \right)  \cr 
   & DKXD:\,\,2x - {\pi  \over 4} \ne k\pi  \Leftrightarrow x \ne {\pi  \over 8} + {{k\pi } \over 2}  \cr 
   &  \Rightarrow D = R\backslash \left\{ {{\pi  \over 8} + {{k\pi } \over 2};\,\,k \in Z} \right\}  \cr 
   & c)\,\,y = {2 \over {\cos x - 1}}  \cr 
   & DKXD:\,\,\cos x - 1 \ne 0 \Leftrightarrow \cos x \ne 0  \cr 
   &  \Leftrightarrow x \ne {\pi  \over 2} + k\pi \,\,\left( {k \in Z} \right)  \cr 
   &  \Rightarrow D = R\backslash \left\{ {{\pi  \over 2} + k\pi ,\,\,k \in Z} \right\}  \cr 
   & d)\,\,y = \sqrt {{{\sin x + 2} \over {\cos x + 1}}}   \cr 
   &  - 1 \le \sin x \le 1 \Leftrightarrow 1 \le \sin x + 2 \le 3  \cr 
   &  \Rightarrow \sin x + 2 > 0\,\,\forall x  \cr 
   & DKXD:\,\,\left\{ \matrix{
   {{\sin x + 2} \over {\cos x + 1}} \ge 0 \hfill \cr 
   \cos x + 1 \ne 0 \hfill \cr}  \right.  \cr 
   & Do\,\,\sin x + 2 > 0\,\,\forall x  \cr 
   &  \Rightarrow \cos x + 1 > 0  \cr 
   &  \Leftrightarrow \cos x >  - 1  \cr 
   &  \Leftrightarrow \cos x \ne  - 1  \cr 
   &  \Leftrightarrow x \ne \pi  + k2\pi \,\,\left( {k \in Z} \right)  \cr 
   &  \Rightarrow D = R\backslash \left\{ {\pi  + k2\pi ,\,\,k \in Z} \right\} \cr} $$