Đáp án: + Giải thích các bước giải:
`(1/3\sqrt{2/3}-2/3\sqrt{3/2}+2/7\sqrt{1/6})\div(2/7\sqrt{1/8})`
`= (1/3\sqrt{1/2}-2/3\sqrt{3/2}+2/7\sqrt{1/6})\div1/(7\sqrt{2})`
`= 1/(3\sqrt{2}) - \sqrt{6}/3 + \sqrt{2}/(7\sqrt{3}) \div 1/(7\sqrt{2})`
`= (1/(\sqrt{2}*3) - \sqrt{6}/3 + \sqrt{2}/(\sqrt{3}*7))\sqrt{2} * 7 \div 1`
`= 7\sqrt{2}(7\sqrt{3}-36)/(21\sqrt{6}) \div1`
`= (7\sqrt{3}-36)/(21\sqrt{6})\sqrt{2}*7`
`= ((7\sqrt{3}-36)\sqrt{2}*7)/(21\sqrt{6})`
`= (\sqrt{2}(7\sqrt{3}-36))/(3\sqrt{2}\sqrt{3})`
`= (7\sqrt{3}-36)/(3\sqrt{3})`
`= (7-12\sqrt{3})/3`