Tham khảo
Đặt `A=\frac{12}{5.2.5}+\frac{12}{5.5.8}+...+\frac{12}{5.17.20}`
`⇒A=\frac{4}{5}.(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20})`
`⇒A=\frac{4}{5}.(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{17}-\frac{1}{20})`
`⇒A=\frac{4}{5}.(\frac{1}{2}-\frac{1}{20})`
`⇒A=\frac{4}{5}.\frac{9}{20}`
`⇒A=\frac{9}{25}`
Giải thích
Áp dụng `\frac{3}{n(n+3)}=\frac{1}{n}-\frac{1}{n+3}(n\ne 0,-3)`
`\text{©CBT}`