Tính giới hạn $\displaystyle L=\lim \frac{\left( {{n}^{2}}+2n \right)\left( 2{{n}^{3}}+1 \right)\left( 4n+5 \right)}{\left( {{n}^{4}}-3n-1 \right)\left( 3{{n}^{2}}-7 \right)}.$
A. $\displaystyle L=0.$
B. $\displaystyle L=1.$
C. $L=\frac{8}{3}.$
D. $L=+\infty .$