`C = 6/3 + 6/3^2 + 6/3^3 + ... + 6/3^99`
` Cách 1 :`
`⇒ C = 2 + 6/3. 1/3 + 6/3. 1/3^2 + ... + 6/3. 1/3^98`
`⇒ C = 2. 1 + 2. 1/3 + 2. 1/3^2 + ... + 2. 1/3^98`
`⇒ C = 2. (1+ 1/3 + 1/3^2 + ... + 1/3^98)`
` Đặt B = 1 + 1/3 + 1/3^2 + ... + 1/3^98)`
`⇒ 3B = 3. (1 + 1/3 + 1/3^2 + ... + 1/3^98)`
`⇒ 3B = 3 + 1 + 1/3 + ... + 1/3^97`
`⇒ 3B - B = (3 + 1 + 1/3 + ... + 1/3^97) - (1 + 1/3 + 1/3^2 + ... + 1/3^98)`
`⇒ 2B = 3 - 1/3^98`
`⇒ B = (3 - 1/3^98 ) / 2`
`⇒ C = 2. (3 - 1/3^98 ) /2`
`⇒ C = 3 - 1/3^98`
` Vậy C = 3 - 1/3^98`
`Cách 2:`
`⇒ 3C = 3. (6/3 + 6/3^2 + 6/3^3 + ... + 6/3^99)`
`⇒ 3C = 6 + 6/3 + 6/3^2 + ... + 6/3^98`
`⇒ 3C - C = (6 + 6/3 + 6/3^2 + ... + 6/3^98) - (6/3 + 6/3^2 + 6/3^3 + ... + 6/3^99)`
`⇒ 2C = 6 - 6/3^99`
`⇒ C = (6 - 6/3^99) / 2`
`⇒ C = 3 - 3/3^99`
`⇒ C = 3 - 1/3^98`
`Vậy C = 3 - 1/3^98`