Đáp án: `S = \frac{3^{90}-1}{3^{90}.2}`.
Giải thích các bước giải:
`S = 2/3 - 2/{3^2} + 2/{3^3} - 2/{3^4} + .... + 2/{3^{89}} - 2/{3^{90}}`
`⇔ 3S = 2 - 2/3 + 2/{3^2} - 2/{3^3} + .... + 2/{8^{88}} - 2/{3^{89}}`
`⇔ 3S + S = (2 - 2/3 + 2/{3^2} - 2/{3^3} + .... + 2/{8^{88}} - 2/{3^{89}})+( 2/3 - 2/{3^2} + 2/{3^3} - 2/{3^4} + .... + 2/{3^{89}} - 2/{3^{90}})`
`⇔ 4S = 2 - 2/{3^{90}}`
`⇔ 4S = {2.3^{90} - 2}/{3^{90}}`
`⇔ S = \frac{2(3^{90}-1)}{3^{90}.4}`
`⇔ S = \frac{3^{90}-1}{3^{90}.2}`.