Điều kiện xác định:
$\left\{ \begin{array}{l} \cos x \ne 0\\ \cos 3x \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ne \dfrac{\pi }{2} + k\pi \\ 3x \ne \dfrac{\pi }{2} + k\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x \ne \dfrac{\pi }{2} + k\pi \\ x \ne \dfrac{\pi }{6} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in Z} \right)(1)$
$\begin{array}{l}
\tan x = \tan 3x\\
\Leftrightarrow 3x = x + k\pi \\
\Leftrightarrow x = \dfrac{{k\pi }}{2}\\
\left( 1 \right) \Rightarrow x = k\pi \\
0 < x < 30 \Rightarrow 0 < k\pi < 30 \Rightarrow 0 < k < \dfrac{{30}}{\pi }\\
\Rightarrow k \in \left[ {1;9} \right]\\
\Rightarrow S = \pi + 2\pi + 3\pi + ... + 9\pi = \pi \left( {1 + 2 + 3 + ... + 9} \right)\\
= \pi .\dfrac{{9.10}}{2} = 45\pi
\end{array}$