Đáp án đúng: D Phương pháp giải: Phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có nghiệm kép \( \Leftrightarrow \Delta = {b^2} - 4ac = 0\) hoặc \(\Delta ' = b{'^2} - ac = 0\,\,\,\left( {b = 2b'} \right).\) Giải chi tiết:+) Xét đáp án A: \({x^2} + 8x + 7 = 0\) ta có: \(\Delta ' = {4^2} - 7 = 9 > 0\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt. \( \Rightarrow \) Loại đáp án A. +) Xét đáp án B: \({x^2} - 9 = 0 \Leftrightarrow {x^2} = 9\) \( \Leftrightarrow x = \pm 3\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt. \( \Rightarrow \) Loại đáp án B. +) Xét đáp án C: \({x^2} - 7x + 4 = 0\) ta có: \(\Delta = {\left( { - 7} \right)^2} - 4.4 = 33 > 0\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt. \( \Rightarrow \) Loại đáp án C. +) Xét đáp án D: \({x^2} - 6x + 9 = 0\) ta có: \(\Delta ' = {3^2} - 9 = 0\) \( \Rightarrow \) Phương trình có nghiệm kép. \( \Rightarrow \) Chọn đáp án D. Chọn D.