Trong mặt phẳng Oxy, cho điểm \(C\left( {2;\, - 5} \right)\), đường thẳng \(\Delta :3x - 4y + 4 = 0\). Tìm trên đường thẳng \(\Delta \) hai điểm A, B đối xứng nhau qua điểm \(I\left( {2;\,\frac{5}{2}} \right)\) sao cho diện tích tam giác ABC bằng 15.
A.\(A\left( {0; - 1} \right),B\left( {4; - 4} \right)\) hoặc \(A\left( {4; - 4} \right),B\left( {0; - 1} \right)\)
B.\(A\left( {0;1} \right),B\left( { - 4; - 4} \right)\) hoặc \(A\left( { - 4; - 4} \right),B\left( {0;1} \right)\)
C.\(A\left( {0; - 1} \right),B\left( { - 4;4} \right)\) hoặc \(A\left( { - 4;4} \right),B\left( {0; - 1} \right)\)
D.\(A\left( {0;1} \right),B\left( {4;4} \right)\) hoặc \(A\left( {4;4} \right),B\left( {0;1} \right)\)