Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng \(\Delta :y-2=0\) và các điểm A B (0;6), (4;4). Viết phương trình tổng quát của đường thẳng AB. Tìm tọa độ điểm C trên đường thẳng \(\Delta\) sao cho tam giác ABC vuông tại B.
Phương trình đường thẳng AB là: \(\frac{x-0}{4-0}=\frac{y-6}{4-6}\Leftrightarrow \frac{x}{2}=\frac{y-6}{-1}\)
\(-x=2y-12\Leftrightarrow x+2y-12=0\) \(C\in \Delta \Rightarrow C(t;2)\Rightarrow \overline{BA}(-4;2),\overline{BC}=(t-4;-2)\) Tam giác ABC vuông tại B nên \(\overline{BA}.\overline{BC}=0\Leftrightarrow -4t+16-4=0\Leftrightarrow t=3\Rightarrow C(3;2)\)
Em sẽ rất biết ơn ai giải giúp em bài này!
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD biết AB= \(\frac{3}{2}\) AD . Gọi F là điểm thuộc đoạn thẳng BC sao cho BF= \(\frac{3}{4}\)BC. Đường tròn (T) ngoại tiếp tam giác ABF có phương trình \((x-\frac{9}{4})^2+(y-\frac{1}{4})^2=\frac{225}{8}\). Đường thẳng d đi qua hai điểm A, C có phương trình \(3x+11y-2=0\). Tìm tọa độ đỉnh C biết điểm A có hoành độ âm.
Help me!
Giải hệ phương trình \(\left\{\begin{matrix} \sqrt{9y^2+(2y+3)(y-x)}+4\sqrt{xy}=7x\\ (2y-1)\sqrt{1+x}+(2y+1)\sqrt{1-x}=2y \end{matrix}\right.\) trên tập số thực.
Làm toát mồ hôi mà vẫn không ra, giúp em vs!
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD vuông tại B và C có AB > CD và CD = BC. Đường tròn đường kính AB có phương trình x 2 + y 2 – 4x – 5 = 0 cắt cạnh AD của hình thang tại điểm thứ hai N. Gọi M là hình chiếu vuông góc của D trên đường thẳng AB. Biết điểm N có tung độ dương và đường thẳng MN có phương trình 3x + y – 3 = 0, tìm tọa độ của các đỉnh A, B, C, D của hình thang ABCD.
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm của cạnh AD và DC; K là giao điểm của BN với CM. Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2x + y - 8 = 0 và điểm B có hoành độ lớn hơn 2.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \((C):x^{2}+y^{2}-2x+4y+2=0\). Viết phương trình đường tròn \((C')\) tâm M(5, 1) biết \((C')\) cắt \((C)\) tại các điểm A, B sao cho \(AB=\sqrt{3}\).
Giải hệ phương trình \(\left\{\begin{matrix} (1-y)\sqrt{x^2+2y^2}=x+2y+3xy\\ \sqrt{y+1}+\sqrt{x^2+2y^2}=2y-x \end{matrix}\right. \ \ \ (x,y\in R)\)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): \(x^2+y^2=25\) ngoại tiếp ABC nhọn có chân các đường cao hạ từ B, C lần lượt là M(-1;3), N(2;-3). Tìm tọa độ các đỉnh \(\Delta\)ABC, biết rằng điểm A có tung độ âm.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trung điểm cạnh BC là M(3; -1). Điểm E(-1; -3) nằm trên đường thẳng \(\Delta\) chứa đường cao qua đỉnh B. Đường thẳng AC qua F(1; 3). Tìm tọa độ các đỉnh của \(\triangle ABC\) có đường kính AD với D(4; -2).
mn người ơi, giải giúp em vs, bài này khó quá!
Giải hệ phương trình: \(\left\{\begin{matrix} xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{y}\\ 3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7 \end{matrix}\right.\)
Giải hệ phương trình: \(\left\{\begin{matrix} x-y\sqrt{2-x}+2y^2=2\\ 2(\sqrt{x+2})-4y+8\sqrt{y}\sqrt{xy+2y}=34-15x \end{matrix}\right.\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến