Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Kẻ hai tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). a, Chứng minh tứ giác ABOC nội tiếp. b, Qua B kẻ đường thẳng song song với AO, cắt đường tròn (O) tại điểm thứ hai E. Chứng minh ba điểm C, O, E thẳng hàng. c, Gọi I là giao điểm của đoạn thẳng AO với đường tròn (O), chứng minh I là tâm đường tròn nội tiếp tam giác ABC. Tính bán kính đường tròn nội tiếp tam giác ABC khi OB = 2 cm, OA = 4 cm. d, Trên cung nhỏ BC của đường tròn (O) lấy điểm M tùy ý (M khác B, C). Kẻ MD vuông góc với BC, MS vuông góc với CA, MT vuông góc với AB (R, S, T là chân các đường vuông góc). Chứng minh: \(MS.MT = M{R^2}.\)
A.
B.
C.
D.

Các câu hỏi liên quan