Đpcm⇔ (x+y)(y+z)(z+x)≥(x+1)(y+1)(z+1)
⇔(x+y+z)(xy+yz+zx)-xyz≥xyz+(xy+yz+zx)+(x+y+z)+1
⇔(x+y+z)(xy+yz+zx)-1≥1+(xy+yz+zx)+(x+y+z)+1
⇔(x+y+z)(xy+yz+zx)-3≥(xy+yz+zx)+(x+y+z)
Đặt a=xy+yz+zx≥3.$\sqrt[3]{(xyz)²}$ =3
b=x+y+z≥3.$\sqrt[3]{xyz}$ =3
ĐPcm ab-3≥(a+b)
⇔ab-a-b≥3
⇔(a-1)(b-1)≥4
vì a≥3 nên a-1≥2
Tương tự b-1≥2
Suy ra (a-1)(b-1)≥4 (dpcm)