Đề thi thử Toán THPTQG 2018 trường THPT Quỳ Hợp 2 – Nghệ An
Đề thi thử Toán THPTQG 2018 trường THPT Quỳ Hợp 2 – Nghệ An được biên soạn bám sát đề tham khảo môn Toán 2018 của Bộ Giáo dục và Đào tạo, đề gồm 7 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong khoảng thời gian 90 phút. Khi kỳ thi THPT Quốc gia 2018 môn Toán chính thức đang đến gần (khoảng 2 tháng nữa) thì việc tổ chức các kỳ thi thử Toán là điều hết sức cần thiết để kiểm tra năng lực hiện tại của học sinh, ngoài ra còn giúp các em làm quen với kỳ thi, biết được cấu trúc và các dạng toán trong đề để có thể vạch ra hướng ôn tập hợp lý. Đề thi thử Toán có đáp án.
Đề thi thử Toán THPTQG 2018 trường THPT Quỳ Hợp 2 – Nghệ An được biên soạn bám sát đề tham khảo môn Toán 2018 của Bộ Giáo dục và Đào tạo, đề gồm 7 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong khoảng thời gian 90 phút. Khi kỳ thi THPT Quốc gia 2018 môn Toán chính thức đang đến gần (khoảng 2 tháng nữa) thì việc tổ chức các kỳ thi thử Toán là điều hết sức cần thiết để kiểm tra năng lực hiện tại của học sinh, ngoài ra còn giúp các em làm quen với kỳ thi, biết được cấu trúc và các dạng toán trong đề để có thể vạch ra hướng ôn tập hợp lý. Đề thi thử Toán có đáp án.
- Trích dẫn đề thi thử Toán THPTQG 2018:
+ Gọi N(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t năm trước đây thì ta có công thức N(t) = 100.(0,5)^t/A (%) với A là hằng số. Biết rằng một mẫu gỗ có tuổi khoảng 3574 năm thì lượng cacbon 14 còn lại là 65%. Phân tích mẫu gỗ từ một công trình kiến trúc cổ, người ta thấy lượng cacbon 14 còn lại trong mẫu gỗ đó là 63% . Hãy xác định tuổi của mẫu gỗ được lấy từ công trình đó.
+ Giải bóng đá của học sinh trường THPT Quỳ Hợp 2 gồm 9 đội tham dự, trong đó có 3 đội khối 10, 3 đội khối 11 và 3 đội khối 12. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 3 bảng A, B, C và mỗi bảng có 3 đội. Tính xác suất để 3 đội bóng của khối 12 ở 3 bảng khác nhau.
+ Trong không gian Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^3 = 25 và M(4;6;3). Qua M kẻ các tia Mx, My, Mz đôi một vuông góc với nhau và cắt mặt cầu tại điểm thứ hai tương ứng là A, B, C. Biết mặt phẳng (ABC) luôn đi qua một điểm cố định H(a;b;c). Tính a + 3b + c. Chi tiết đề thi
Bài viết gợi ý: