1, a3+b3+3ab(a2+b2)+6a2b2(a+b)
=a3+b3+3a3b+3ab3+6a2b2
=(a+b)(a2−ab+b2)+3ab(a2+2ab+b2)
=a2−ab+b2+3ab(a+b)2
=a2−ab+b2+3ab
=a2+2ab+b2=(a+b)2
=1
Vậy A = 1
Bài 2: ( đặt đề bài là A )
Đặt b+c−a=x,a+c−b=y,a+b−c=z
⇒a+b+c=x+y+z
⇔A=(x+y+z)3−x3−y3−z3
=x3+y3+z3+3(x+y)(y+z)(x+z)−x3−y3−z3
=3(x+y)(y+z)(x+z)
=3.2c.2a.2b=24abc
Vậy...
Bài 3:
+) Xét p = 3 có: p2+2=11∈P ( t/m )
+) Xét pe3 thì:
+ p=3k+1⇒p2+2=(3k+1)2+2=9k2+6k+3⋮3otinP
+ p=3k+2⇒p2+2=(3k+2)2+2=9k2+12k+6⋮3otinP
Vậy p = 3
Bài 4:
a1+b1+c1=2
⇔(a1+b1+c1)2=4
⇔a21+b21+c21+ab2+bc2+ac2=4
⇔a21+b21+c21+abc2c+abc2a+abc2b=4
⇔a21+b21+c21+abc2(a+b+c)=4
⇔a21+b21+c21+2=4
⇔a21+b21+c21=2
⇒đpcm