1) Giải phương trình: \(x\sqrt {2x + 3} + 3\left( {\sqrt {x + 5} + 1} \right) = 3x + \sqrt {2{x^2} + 13x + 15} + \sqrt {2x + 3} .\)
2) Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + 4y - 13 + \left( {x - 3} \right)\sqrt {{x^2} + y - 4} = 0\\\left( {x + y - 3} \right)\sqrt y + \left( {y - 1} \right)\sqrt {x + y + 1} = x + 3y - 5\end{array} \right..\)
A.1) \(x = 3;x = \frac{{ - 1 + \sqrt {17} }}{2}\)
2) \(\left( {x;\;y} \right) = \left( {3;\;1} \right).\)
B.1) \(x = 6;x = \frac{{ - 1 + \sqrt {11} }}{2}\)
2) \(\left( {x;\;y} \right) = \left( {3;\;1} \right).\)
C.1) \(x = 3;x = \frac{{ - 1 + \sqrt {7} }}{2}\)
2) \(\left( {x;\;y} \right) = \left( {4;\;1} \right).\)
D.1) \(x = 2;x = \frac{{ - 1 + \sqrt {15} }}{2}\)
2) \(\left( {x;\;y} \right) = \left( {-3;\;1} \right).\)