Đáp án + Giải thích các bước giải:
`1.`
`sinx + 4cosx = 2 + sin2x`
`<=>sinx+4cosx-2-2sinxcosx=0`
`<=>(sinx-2sinxcosx)-2+4cosx=0`
`<=>sinx(1-2cosx)-2(1-2cosx)=0`
`<=>(sinx-2)(1-2cosx)=0`
`<=>` \(\left[ \begin{array}{l}\sin x=2(VN)\\\cos x=\dfrac{1}{2}\end{array} \right.\)
`<=>x=+-pi/3+k2pi(kinZZ)`
`2.`
`sqrt2 (sinx- 2cosx) = 2 -sin2x`
`<=>sqrt2sinx-2sqrt2cosx+2sinxcosx-2=0`
`<=>sqrt2sinx(1+sqrt2cosx)-2(1+sqrt2cosx)=0`
`<=>(1+sqrt2cosx)(sqrt2sinx-2)=0`
`<=>`\(\left[ \begin{array}{l}\cos x=-\dfrac{1}{\sqrt2}\\\sin x=\sqrt2(VN)\end{array} \right.\)
`<=>x=+-(3pi)/4+k2pi(kinZZ)`
`=>alpha=(3pi)/4,beta=-(3pi)/4`
`=>alpha.beta=-(9pi^2)/16`