Ta có \(9=(\sqrt{a+1}\frac{1}{\sqrt{a+1}}+\sqrt{b+1}\frac{1}{\sqrt{b+1}}+\sqrt{c+1}\frac{1}{\sqrt{c+1}})^2\) \(\leq P(a+b+c+3)\) \(\Rightarrow P\geq \frac{9}{a+b+c+3}\) Giả thiết \(\Leftrightarrow a^2+b^2+c^2-(a+b+c)\leq \frac{4}{3} \ \ (1)\) Mặt khác \(a^2+b^2+c^2\geq \frac{1}{3}(a+b+c)^2\) nên đặt \(t=a+b+c\) thì \(\frac{1}{3}t^2-t\leq \frac{4}{3}\Leftrightarrow 0< t\leq 4\) (do a, b, c dương) Xét hàm số \(f(t)=\frac{9}{t+3}\) trên \((0;4 ]\) ta có \(f'(t)=-\frac{9}{(t+3)^2}<0\Rightarrow\) Hàm số f(t) nghịch biến trên (0;4] \(\Rightarrow min _{(0;4]}f(t)=f(4)=\frac{9}{7}\) GTNN của P là \(\frac{9}{7}\) khi \(\left\{\begin{matrix} a+b+c=4\\ a+1=b+1=c+1 \end{matrix}\right.\Leftrightarrow a=b=c=\frac{4}{3}\)