Cho hàm số \(y=x^{3}-3x^{2}+2\). Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Chứng minh rằng điểm uốn là tâm đối xứng của đồ thị.
+ Khảo sát và vẽ đồ thị hàm số
Ta có: \(y''=6x-6\Rightarrow y''=0\Leftrightarrow x=0\Rightarrow x_{u}=1,y_{u}=0\)
Đổi trục tọa độ \(x=X+1,y=Y\) ta được hệ trục UXY.
Phương trình của đường cong trong hệ trục tọa độ mới là \(Y=X^{3}-3X.\)
Hàm số mới là hàm lẻ nên đồ thị của nó nhận điểm uốn U(1; 0) làm tâm đối xứng
Cứu với mọi người!
Trong không gian với hệ tọa độ (Oxyz), cho các điểm M (1; 2;0), N(3;4;2) và mặt phẳng \((P):2x+2y+z-7=0\). Viết phương trình đường thẳng MN và tính khoảng cách từ trung điểm của đoạn thẳng MN đến mặt phẳng (P).
Bài này phải làm sao mọi người?
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;1;-3), B(4;3;-2), C(6;-4;-1). Chứng minh rằng A, B,C là ba đỉnh của một tam giác vuông và viết phương trình mặt cầu tâm A đi qua trọng tâm G của tam giác ABC.
Tìm mô đun của số phức z, biết \((2+i)(1-iz)+\frac{2(1+2i)}{1+i}=(3-2i)z\)
Cho ba số thực dương a, b, c thỏa mãn a + b + c = 1 và a + b >2c. Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\frac{6\sqrt{15}}{25(a+b)}\)
Trong không gian với hệ tọa độ (Oxyz), cho hai đường thẳng d1 d2; lần lượt có phương trình: \(d_1:\frac{x-7}{1}=\frac{y-4}{2}=\frac{z-9}{-1}\) và \(d_1:\frac{x-3}{-7}=\frac{y-1}{2}=\frac{z-1}{3}\). Viết phương trình đường thẳng \(\Delta\) cắt d1 d2; và trục Ox lần lượt tại các điểm A, B, C sao cho B là trung điểm của AC.
Trong không gian hệ Oxyz, cho hai điểm A(0 ; 0; -3), B( 2; 0; -1) và mặt phẳng (P) có phương trình 3x – 4y + z – 1 =0. Tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P). Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với đường thẳng AB.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = \(\small a\sqrt{2}\) . Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trọng tâm tam giác. Đường thẳng SD tạo với đáy ABCD một góc 450. Tính thể tích khối chóp S.ABCD và tính khoảng cách giữa hai đường thẳng SC và BD theo a.
Cho hình hộp đứng ABCD.A'B'C'D'. Đáy ABCD là hình thoi cạnh a; A'C \(=a\sqrt{2}\) ; góc giữa đường thẳng AB và mặt phẳng (ADD'A') bằng 450. Tính theo a thể tích khối hộp đã cho và khoảng cách từ điểm D đến mặt phẳng (A'BC).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, BC = 2a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, mặt bên (SAC) hợp với mặt đáy một góc 600. Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm A đến mặt phẳng (SCI), biết rằng I là trung điểm của cạnh AB.
Cho hàm số \(y=-2x^3+3mx^2-1\) (1). Tìm các giá trị của m để hàm số (1) đồng biến trong khoảng (x1;x2) với x2 - x1 = 1.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến