Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Gọi K là điểm thuộc cạnh AB thỏa KB = 3KA. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa SB và KD.
Gọi H là trung điểm AB . Chứng minh được \(SH\perp (ABCD)\) và \(SH=\frac{a}{2}\) Vậy \(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a}{2}.a^2=\frac{a^3}{6}\) (đvtt) Gọi I thuộc cạnh CD sao cho ID = 3IC thì DK // BI Do đó \(d(DK,SB)=d(DK,(SBI))=d(K,(SBI))=\frac{3}{2}d(H,(SBI))\) Kẻ \(HE\perp BI\) tại E và \(HF\perp SE\) tại F. Ta chứng minh được \(d(H,(SBI))=HF\) Ta có: \(HE=HB.sin\widehat{HBI}=HB.sin\widehat{BIC}=HB.\frac{BC}{BI}=\frac{2a}{\sqrt{17}}\) Và \(\frac{1}{HF^2}=\frac{1}{SH^2}+\frac{1}{HE^2}=\frac{33}{4a^2}\Rightarrow HF=\frac{2a\sqrt{33}}{33}\) Vậy \(d(DK,SB)=\frac{a\sqrt{33}}{11}\)