Đáp án:
Giải thích các bước giải:
Ta có: $\dfrac{1}{2^{2}}<\dfrac{1}{1.2}$ $;$ $\dfrac{1}{3^{2}}<\dfrac{1}{2.3}$ $;...;$ $\dfrac{1}{100^{2}}<\dfrac{1}{99.100}$
$ $
$⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+....+\dfrac{1}{100^{2}}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}$
$ $
$⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+....+\dfrac{1}{100^{2}}<1-\dfrac{1}{100}<1$
$ $
$⇒\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+....+\dfrac{1}{100^{2}}<1$