Giải thích các bước giải:
a.Ta có $AB//CD\to \widehat{FBA}=\widehat{FIC},\widehat{FAB}=\widehat{FCI}$
$\to\Delta AFB\sim\Delta CFI(g.g)$
b.Ta có $AB//CD\to AB//DK$
$\to \dfrac{AB}{DK}=\dfrac{EA}{EK}$
$\to AE.KD=AB.EK$
c.Gọi $AC\cap BD=O$
Ta có $AK//BC,AB//CD\to AB//CK\to ABCK$ là hình bình hành
$\to AB=CK$
Tương tự $\to AB=DI$
$\to DI=CK$
$\to CD-DI=CD-CK$
$\to CI=DK$
$\to \dfrac{AB}{DK}=\dfrac{AB}{CI}$
$\to \dfrac{EA}{EK}=\dfrac{FA}{FC}$
$\to EF//CK$
$\to EF//AB, EF//CD$
$\to \dfrac{EF}{DI}=\dfrac{BF}{BI}$
$\to \dfrac{EF}{AB}=\dfrac{BF}{BI}$
$\to EF=AB.\dfrac{BF}{BI}$
Mà $\dfrac{FB}{FI}=\dfrac{AB}{CI}$
$\to \dfrac{FB}{FI+FB}=\dfrac{AB}{CI+AB}$
$\to \dfrac{FB}{BI}=\dfrac{AB}{CI+DI}$
$\to \dfrac{FB}{BI}=\dfrac{AB}{CD}$
$\to EF=AB.\dfrac{AB}{CD}$
$\to EF.CD=AB^2$