Đáp án: $ P=-\dfrac{\sqrt{3}}{2}+3$
Giải thích các bước giải:
Ta có :
$\sin\left(\dfrac{-14\pi}{3}\right)=-\sin \left(\dfrac{14\pi }{3}\right)=-\sin \left(\dfrac{2\pi }{3}+4\pi\right)=-\sin \left(\dfrac{2\pi }{3}\right)=-\dfrac{\sqrt{3}}{2}$
$\sin\left(\dfrac{29\pi}{4}\right)=\sin \left(\dfrac{5\pi }{4}+6\pi\right)=\sin \left(\dfrac{5\pi }{4}\right)=\sin \left(\dfrac{\pi }{4}+\pi\right)=-\sin \left(\dfrac{\pi }{4}\right)=-\dfrac{\sqrt{2}}{2}$
$\tan\left(\dfrac{3\pi}{4}\right)=\tan\left(\pi-\dfrac{\pi}{4}\right)=\tan\left(-\dfrac{\pi}{4}\right)=-\tan\left(\dfrac{\pi}{4}\right)=-1$
$\to P=-\dfrac{\sqrt{3}}{2}+3$