$5x^4-2x^2=3$
$⇔(5x^4-5x^3)+(5x^3-5x^2)+(3x^2-3)=0$
$⇔5x^3(x-1)+5x^2(x-1)+3(x+1)(x-1)=0$
$⇔(x-1)(5x^3+5x^2+3x+3)=0$
$⇔(x-1)(x+1)(5x^2+3)=0$
Vì $5x^2≥0∀x⇒5x^2+3>0∀x$
$⇒(x-1)(x+1)=0$
$⇔\left[ \begin{array}{l}x-1=0\\x+1=0\end{array} \right.⇔\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.$
Vậy $S=\{1;-1\}$.