Cả 2 câu ta sẽ áp dụng công thức: $\frac{1}{n}$-$\frac{1}{n+2}$=$\frac{2}{n(n+2)}$
a) A=$\frac{2020}{3}$+$\frac{2020}{15}$+$\frac{2020}{35}$+...+$\frac{2020}{9999}$
=$1010.\frac{2}{3}$+$1010.\frac{2}{15}$+$1010.\frac{2}{35}$+...+$1010.\frac{2}{9999}$
=1010.($\frac{2}{3}$+$\frac{2}{15}$+$\frac{2}{35}$+...+$\frac{2}{9999}$)
=1010.($\frac{2}{1.3}$+$\frac{2}{3.5}$+$\frac{2}{5.7}$+...+$\frac{2}{99.101}$)
=1010.($\frac{1}{1}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+...+$\frac{1}{99}$-$\frac{1}{101}$)
=1010.($\frac{1}{1}$-$\frac{1}{101}$)
=1010.$\frac{100}{101}$=1000
Vậy A=1000
b) Đặt B=$\frac{1}{3.5}$+$\frac{1}{5.7}$+...+$\frac{1}{97.99}$
⇒ 2B=$\frac{2}{3.5}$+$\frac{2}{5.7}$+...+$\frac{2}{97.99}$
=$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+...+$\frac{1}{97}$-$\frac{1}{99}$
=$\frac{1}{3}$-$\frac{1}{99}$=$\frac{32}{99}$
⇒ B=$\frac{32}{99}$÷2=$\frac{16}{99}$