$((\frac{2}{193} - \frac{3}{386}) × \frac{193}{17} + \frac{33}{34})÷((\frac{7}{1931} + \frac{11}{3862}) × \frac{1931}{25} + \frac{9}{2})$
= $((\frac{4}{386} - \frac{3}{386}) × \frac{193}{17} + \frac{33}{34})÷((\frac{14}{3862} + \frac{11}{3862}) × \frac{1931}{25} + \frac{9}{2})$
= $(\frac{4-3}{386} × \frac{193}{17} + \frac{33}{34})÷(\frac{14+11}{3862} × \frac{1931}{25} + \frac{9}{2})$
= $(\frac{1}{386} × \frac{193}{17} + \frac{33}{34})÷(\frac{25}{3862} × \frac{1931}{25} + \frac{9}{2})$
= $(\frac{1 × 193}{386 × 17} + \frac{33}{34})÷(\frac{25 × 1931}{3862 × 25} + \frac{9}{2})$
= $(\frac{1}{34} + \frac{33}{34})÷(\frac{1}{2} + \frac{9}{2})$
= $\frac{1+33}{34}÷\frac{1+9}{2}$
= $1÷5$ = $\frac{1}{5}$