Đáp án:
a.
- Theo đề bài:
$L_{gen1}$ = $L_{gen2}$
⇒ $N_{gen1}$ = $N_{gen2}$
$2A_{gen1}$ + $2G_{gen1}$ = $2A_{gen2}$ + $2G_{gen2}$ (1)
⇒ $2G_{gen1}$ - $2G_{gen2}$ = $2A_{gen2}$ - $2A_{gen1}$
⇔ $G_{gen1}$ - $G_{gen2}$ = $A_{gen2}$ - $A_{gen1}$ (2)
- Ta có:
$H_{gen1}$ = $H_{gen2}$ + 160
⇔ $2A_{gen1}$ + $3G_{gen1}$ = $2A_{gen2}$ + $3G_{gen2}$ + 160 (3)
- Từ (1) và (3):
⇒ $G_{gen1}$ - $G_{gen2}$ = 160
- Từ (2):
⇒ $G_{gen1}$ - $G_{gen2}$ = $A_{gen2}$ - $A_{gen1}$ = 160
- Mà:
$A_{gen1}$ = $\frac{3000}{24-1}$ = 200
⇒ $A_{gen2}$ = 200 + 160 = 360
$G_{gen2}$ = $\frac{6750}{24-1}$ = 450
⇒ $G_{gen1}$ = 450 + 160 = 610
- Số Nu mỗi loại gen:
+ Gen 1:
A = T = 200 Nu
G = X = 610 Nu
+ Gen 2:
A = T = 360 Nu
G = X = 450 Nu
b.
$L_{gen1}$ = $L_{gen2}$ = (200 + 610) x 3,4 = 2754 $A^{o}$
c.
$C_{gen1}$ = $C_{gen2}$ = (200 + 610) x $\frac{2}{20}$ = 81 chu kì xoắn
$H_{gen1}$ = (2 x 200) + (3 x 610) = 2230 liên kết
$H_{gen2}$ = 2230 - 160 = 2070 liên kết
Xin câu trả lời hay nhất cho nhóm!!
#Hidden ninja