Bài 1:

a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+-+\dfrac{1}{100^2}\)

Chứng tỏ: A <\(\dfrac{1}{2}\)

b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+-+\dfrac{1}{2^{20}}\)

Chứng tỏ B < 1

c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

Chứng tỏ C < \(\dfrac{1}{2}\)

d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)

Chứng tỏ D < 1

Các câu hỏi liên quan