` a) ` Đặt ` A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^{99} `
Ta có:
` A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^{99} `
` <=> 3A = 1 + 1/3 + 1/3^2 + ... + 1/3^{98} `
` <=> 3A - A = 1 + 1/3 + 1/3^2 + ... + 1/3^{98} - 1/3 - 1/3^2 - 1/3^3 - ... - 1/3^{99} `
` <=> 2A = 1 + (1/3 - 1/3) + (1/3^2 - 1/3^2) + ... + (1/3^{98} - 1/3^{98}) - 1/3^{99} `
` <=> 2A = 1 - 1/3^{99} `
` <=> A = (1 - 1/3^{99}) : 2 = 1/2 - \frac{1}{2.3^{99}} `
Do: ` 1/2 - \frac{1}{2.3^{99}} < 1/2 `
` => A < 1/2 ` ` (đpcm) `
` b) ` Đặt ` B = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^{100} `
Ta có:
` B = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^{100} `
` <=> 3B = 1 + 1/3 + 1/3^2 + ... + 1/3^{99} `
` <=> 3B - B = 1 + 1/3 + 1/3^2 + ... + 1/3^{99} - 1/3 - 1/3^2 - 1/3^3 - ... - 1/3^{100} `
` <=> 2B = 1 + (1/3 - 1/3) + (1/3^2 - 1/3^2) + ... + (1/3^{99} - 1/3^{99}) - 1/3^{100} `
` <=> 2B = 1 - 1/3^{100} `
` <=> B = (1 - 1/3^{100}) : 2 = 1/2 - \frac{1}{2.3^{100}} `
Do: ` 1/2 - \frac{1}{2.3^{100}} < 1/2 `
Mà ` 1/2 = 2/4 < 3/4 `
` => 1/2 - \frac{1}{2.3^{100}} < 3/4 `
` => B < 3/4 ` ` (đpcm) `