a) 5(2x - 1) = 8x + 1
⇔ 10x - 5 = 8x + 1
⇔ 10x - 8x = 1 + 5
⇔ 2x = 6
⇔ x = 3
b) |8x - 3| - 4x = 5
⇔ |8x - 3| = 5 + 4x
Nếu 8x - 3 ≥ 0 ⇔ 8x = 3 ⇔ x = $\frac{3}{8}$
⇔ 8x - 3 = 5 + 4x
⇔ 8x - 4x = 5 + 3
⇔ 4x = 8
⇔ x = 2
Nếu 8x - 3 < 0 ⇔ 8x = 3 ⇔ x = $\frac{3}{8}$
⇔ 8x - 3 = -5 - 4x
⇔ 8x + 4x = -5 + 3
⇔ 12x = -2
⇔ x = $\frac{-1}{6}$
c) $\frac{x + 2}{x - 2}$ - $\frac{1}{x}$ = $\frac{2}{x² - 2x}$
⇔ $\frac{x(x + 2)}{x(x - 2)}$ - $\frac{x + 2}{x(x - 2)}$ = $\frac{2}{x(x - 2)}$
⇔ $x^{2}$ + 2x - x - 2 = 2
⇔ x² + x = 0
⇔ x(x+1) = 0
⇔ x = 0 hay x + 1= 0
⇔ x = 0 hay x = -1