Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\left| {7x - 5y} \right| \ge 0,\,\,\,\,\forall x,y\\
\left| {2z - 3x} \right| \ge 0,\,\,\,\forall x,z\\
\left| {xy + yz + zx - 4500} \right| \ge 0,\,\,\,\forall x,y,z\\
\Rightarrow A = \left| {7x - 5y} \right| + \left| {2z - 3x} \right| + \left| {xy + yz + zx - 4500} \right| \ge 0,\,\,\,\forall x,y,z\\
\Rightarrow {A_{\min }} = 0 \Leftrightarrow \left\{ \begin{array}{l}
7x - 5y = 0\\
2z - 3x = 0\\
xy + yz + zx = 4500
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
7x = 5y\\
2z = 3x\\
xy + yz + zx = 4500
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{7}{5}x\\
z = \frac{3}{2}x\\
xy + yz + zx = 4500
\end{array} \right.\\
xy + yz + zx = 4500\\
\Leftrightarrow x.\frac{7}{5}x + \frac{7}{5}x.\frac{3}{2}x + \frac{3}{2}x.x = 4500\\
\Leftrightarrow 5{x^2} = 4500\\
\Leftrightarrow {x^2} = 900\\
\Leftrightarrow x = \pm 30 \Rightarrow y = \pm 42;\,\,\,z = \pm 45
\end{array}\)