Đáp án:
Giải thích các bước giải:
Chứng minh rằng :
$\frac{1}{1.2}$ + $\frac{1}{3.4}$ + $\frac{1}{5.6}$ + ... + $\frac{1}{49.50}$ = $\frac{1}{26}$ + $\frac{1}{27}$ + $\frac{1}{28}$ + ...+$\frac{1}{50}$
= $\frac{1}{1}$ - $\frac{1}{2}$ + $\frac{1}{3}$ - $\frac{1}{4}$ + $\frac{1}{5}$ - $\frac{1}{6}$ + ... + $\frac{1}{49}$ - $\frac{1}{50}$.
= ( $\frac{1}{1}$ + $\frac{1}{3}$ + ... + $\frac{1}{49}$ ) + ( $\frac{1}{2}$ + $\frac{1}{4}$ + ... + $\frac{1}{50}$ )
= - 2 . ( $\frac{1}{2}$ + $\frac{1}{4}$ + ... + $\frac{1}{50}$ )
= ($\frac{1}{1}$ + $\frac{1}{2}$ + $\frac{1}{3}$ + ... + $\frac{1}{49}$ + $\frac{1}{50}$ ) - ( $\frac{1}{1}$ + $\frac{1}{2}$ + ... + $\frac{1}{25}$
= $\frac{1}{26}$ + $\frac{1}{27}$ + $\frac{1}{28}$ + ... + $\frac{1}{50}$
Vậy $\frac{1}{1.2}$ + $\frac{1}{3.4}$ + $\frac{1}{5.6}$ + ... + $\frac{1}{49.50}$ = $\frac{1}{26}$ + $\frac{1}{27}$ + $\frac{1}{28}$ + ...+$\frac{1}{50}$