\(\text{a) }\left|\left|x+5\right|-4\right|=3\)
- Xét \(x\ge-5\Leftrightarrow\left|x+1\right|=3\):
+) Với \(x\ge-1\Leftrightarrow x+1=3\)
\(\Leftrightarrow x=2\left(T/m\right)\)
+) Với \(-5\le x< -1\Leftrightarrow-x-1=3\)
\(\Leftrightarrow x=-4\left(T/m\right)\)
- Xét \(x< -5\Leftrightarrow\left|x-9\right|=3\)
+) Với \(-5< x< 9\Leftrightarrow9-x=3\)
\(\Leftrightarrow x=6\left(T/m\right)\)
+) Với \(x\ge9\left(loại\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{2;-4;6\right\}\)
\(\text{b) }\left|17x-5\right|-\left|17x+5\right|=0\\ \Leftrightarrow\left|17x-5\right|=\left|17x+5\right|\\ \Leftrightarrow\left[{}\begin{matrix}17x-5=\left(17x+5\right)\\17x-5=-\left(17x+5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}17x-5=17x+5\\17x-5=-17x-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}17x-17x=5+5\\17x+17x=-5+5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=10\left(loại\right)\\34x=0\end{matrix}\right.\Leftrightarrow x=0\)
Vậy phương trình có nghiệm \(x=0\)
\(\text{c) }\left|3x+4\right|=2\left|2x-9\right|\\ \Leftrightarrow\left[{}\begin{matrix}3x+4=2\left(2x-9\right)\\3x+4=-2\left(2x-9\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+4=4x-18\\3x+4=-4x+18\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x-4x=-18-4\\3x+4x=18-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-22\\7x=14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=22\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;22\right\}\)