$\left \{ {{xy-2x+2y-4=xy} \atop {xy-3x+4y-12=xy+6}} \right.$
`⇔`$\left \{ {{xy-2x+2y-xy=4} \atop {xy-3x+4y-xy=6+12}} \right.$
`⇔`$\left \{ {{-2x+2y=4} \atop {-3x+4y=18}} \right.$
`⇔`$\left \{ {{-4x+4y=8} \atop {-3x+4y=18}} \right.$
`⇔`$\left \{ {{-x=-10} \atop {-2x+2y=4}} \right.$
`⇔`$\left \{ {{x=10} \atop {y=12}} \right.$
Vậy `S=``{`(10;12)`}`
$cuthilien$