e) $\frac{3x+2}{2}$ - $\frac{3x+1}{6}$ = $\frac{5}{3}$ + 2x
⇔ $\frac{9x+6}{6}$ - $\frac{3x+1}{6}$ = $\frac{10}{6}$ + $\frac{12x}{6}$
⇔ 9x + 6 - 3x - 1 = 10 + 12x
⇔ 9x - 3x - 12x = 10 - 6 + 1
⇔ -6x = 5
⇔ x = -$\frac{5}{6}$
Vậy S = {-$\frac{5}{6}$}
f) $\frac{x+4}{5}$ - x + 4 = $\frac{x}{3}$ - $\frac{x-2}{2}$
⇔ $\frac{6x+24}{30}$ - $\frac{30x}{30}$ + $\frac{120}{30}$ = $\frac{10x}{30}$ - $\frac{15x-30}{30}$
⇔ 6x + 24 - 30x + 120 = 10x - 15x + 30
⇔ 6x - 30x - 10x + 15x = 30 - 24 - 120
⇔ -19x = -114
⇔ x = -114 : (-19)
⇔ x = 6
Vậy S = {6}
g) $\frac{4x+3}{5}$ - $\frac{6x-2}{7}$ = $\frac{5x+4}{3}$ + 3
⇔ $\frac{84x+63}{105}$ - $\frac{90x-30}{105}$ = $\frac{175x+140}{105}$ + $\frac{315}{105}$
⇔ 84x + 63 - 90x + 30 = 175x + 140 + 315
⇔ 84x - 90x - 175x = 140 + 315 - 63 - 30
⇔ -181x = 362
⇔ x = 362 : (-181)
⇔ x = -2
Vậy S = {-2}
i) $\frac{x-3}{5}$ = 6 - $\frac{1-2x}{3}$
⇔ $\frac{3x-9}{15}$ = $\frac{90}{15}$ - $\frac{5-10x}{15}$
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = -$\frac{94}{7}$
Vậy S = {-$\frac{94}{7}$}