Đáp án:
`a=b=c`
Giải thích các bước giải:
Ta có:
`(overline{ab})/b=(overline{bc})/c=(overline{ca})/a=(overline{ab}+overline{bc}+overline{ca})/(b+c+a)`
`=(10a+a+10b+b+10c+c)/(a+b+c)=(11(a+b+c))/(a+b+c)=11`
`→(overline{ab})/b=11→overline{ab}=11b→10a=10b→a=b`
`→(overline{bc})/c=11→overline{bc}=11c→10b=10c→b=c`
`→(overline{ca})/a=11→overline{ca}=11a→10c=10a→c=a`
Ta có: $\begin{cases}a=b\\b=c\\c=a\\\end{cases}↔a=b=c$
Vậy `a=b=c`