\(a)\ {4.9^x} - {6^x} - {18.4^x} = 0\)
\(\Leftrightarrow 4.{\left( {\frac{3}{2}} \right)^{2x}} - {\left( {\frac{3}{2}} \right)^x} - 18 = 0 \Leftrightarrow \left[ \begin{array}{l} {\left( {\frac{3}{2}} \right)^x} = \frac{9}{4}\\ {\left( {\frac{3}{2}} \right)^x} = - 2 \end{array} \right.\)
+ \({\left( {\frac{3}{2}} \right)^x} = \frac{9}{4} \Leftrightarrow x = 2\)
+\({\left( {\frac{3}{2}} \right)^x} = - 2\) (Vô nghiệm)
Vậy phương trình có 1 nghiệm x = 2
\(b) \ \frac{{2{{\log }_3}x - 5}}{{{{\log }_3}\left( {3x} \right)}} = 1 - 4{\log _3}x\)
Điều kiện: \(\left\{ \begin{array}{l} x > 0\\ x e \frac{1}{3} \end{array} \right.\)
\(\Leftrightarrow \frac{{2{{\log }_3}x - 5}}{{1 + {{\log }_3}x}} = 1 - 4{\log _3}x\)
Đặt \(t = {\log _3}x\). Suy ra: \(\frac{{2t - 5}}{{1 + t}} = 1 - 4t\) , \(\left( {t e - 1} \right)\).
\(\Leftrightarrow 2t - 5 = \left( {1 + t} \right)\left( {1 - 4t} \right)\) (nhận)
\(t = \frac{3}{4} \Leftrightarrow {\log _3}x = \frac{3}{4} \Leftrightarrow x = {3^{\frac{3}{4}}} = \sqrt[4]{{27}}\)
\(t = - 2 \Leftrightarrow {\log _3}x = - 2 \Leftrightarrow x = {3^{ - 2}} = \frac{1}{9}\)
Kết hợp với điều kiện, suy ra phương trình có 2 nghiệm \(x = \sqrt[4]{{27}},\,\,x = \frac{1}{9}\).
\(c) \ {\left( {\frac{1}{7}} \right)^{3{x^2} - x - 6}} > {\left( {\frac{1}{{49}}} \right)^{3x + 7}} \Leftrightarrow {\left( {{7^{ - 1}}} \right)^{3{x^2} - x - 6}} > {\left( {{7^{ - 2}}} \right)^{3x + 7}}\)
\(\Leftrightarrow {7^{ - 3{x^2} + x + 6}} \ge {7^{ - 6x - 14}} \Leftrightarrow - 3{x^2} + 7x + 20 > 0 \Leftrightarrow - \frac{5}{3} < x < 4\)
\(d) \ {\log _3}\left( {x + 1} \right) - 3{\log _{\frac{1}{{27}}}}\left( {13 - 2x} \right) \le 1 + {\log _3}\left( {5x - 1} \right)\)
Điều kiện: \(\frac{1}{5} < x < \frac{{13}}{2}\).
Phương trình đã cho tương đương:
\({\log _3}\left( {x + 1} \right) + {\log _3}\left( {13 - 2x} \right) \le {\log _3}3 + {\log _3}\left( {5x - 1} \right)\)
\(\Leftrightarrow {\log _3}\left[ {\left( {x + 1} \right)\left( {13 - 2x} \right)} \right] \le {\log _3}\left[ {3\left( {5x - 1} \right)} \right]\)
\(\Leftrightarrow \left( {x + 1} \right)\left( {13 - 2x} \right) \le 3\left( {5x - 1} \right)\)
\(\Leftrightarrow - 2{x^2} - 4x + 16 \le 0 \Leftrightarrow \left[ \begin{array}{l} x \le - 4\\ x \ge 2 \end{array} \right.\)
Kết hợp với điều kiện, suy ra \(x \in \left[ {2;\frac{{13}}{2}} \right)\).