`(x^2-x+1)^2=3(x^4+x^2+1)`
đặt `t=x^2-x+1(1)`
`<=>(x^2-x+1)^2=3(x^2-x+1)(x^2-x+1+2x)`
`=>t^2=3t(t+2x)`
`<=>t^2=3t^2+6xt`
`<=>-2t^2=6xt`
`<=>t=(6xt)/(-2t)`
`<=>t=-3x`
thế vào `(1)` ta có:
`x^2-x+1=-3x`
`<=>x^2+2x+1=0`
`<=>(x+1)^2=0`
`<=>x=-1`
vậy `x=-1`