Áp dụng định lý Vi-ét, ta có: $\begin{cases}x_1+x_2=\dfrac53\\x_1x_2=-\dfrac83\end{cases}$
Ta có:
`x_1^3+x_2^3`
`=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)`
`=(x_1+x_2)[(x_1^2+2x_1x_2+x_2^2)-3x_1x_2]`
`=(x_1+x_2)[(x_1+x_2)^2-3x_1x_2]`
`=5/3 .[(5/3)^2-3 . (-8/3)]`
`=485/27`