ta có $g'(x)=f'(x+2)-1=0$
=>$f'(x+2)=1$
=>\(\left[ \begin{array}{l}x+2=0\\x+2=1\end{array} \right.\)
<=>\(\left[ \begin{array}{l}x=-2\\x=-1\end{array} \right.\)
ta có trục dấu
---------(-3)---(+)---(-2)-------+-----------(-1)------(-)-----0---------->
ta thấy $\max_{[-3;0]} g(x)=g(-1)$
=>$g(x)=f(-1+2)+1=f(1)+1$
=>C
xin hay nhất