Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x\# 1\\
A = \left( {\dfrac{{2x + 1}}{{x\sqrt x - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x - 2}}{{x + \sqrt x + 1}}} \right)\\
= \left( {\dfrac{{2x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{x + \sqrt x + 1 - x + 2}}{{x + \sqrt x + 1}}\\
= \dfrac{{2x + 1 - \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{x + \sqrt x + 1}}{{\sqrt x + 3}}\\
= \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}.\dfrac{1}{{\sqrt x + 3}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
b)x = \dfrac{{2 - \sqrt 3 }}{2}\left( {tmdk} \right)\\
= \dfrac{{4 - 2\sqrt 3 }}{4}\\
= {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2}\\
\Leftrightarrow \sqrt x = \dfrac{{\sqrt 3 - 1}}{2}\\
\Leftrightarrow A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{2}}}{{\dfrac{{\sqrt 3 - 1}}{2} + 3}}\\
= \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1 + 6}}\\
= \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {5 - \sqrt 3 } \right)}}{{\left( {\sqrt 3 + 5} \right)\left( {5 - \sqrt 3 } \right)}}\\
= \dfrac{{6\sqrt 3 - 14}}{{25 - 3}}\\
= \dfrac{{3\sqrt 3 - 7}}{{11}}\\
c)A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\sqrt x + 3 - 3}}{{\sqrt x + 3}}\\
= 1 - \dfrac{3}{{\sqrt x + 3}}\\
A \in Z\\
\Leftrightarrow \dfrac{3}{{\sqrt x + 3}} \in Z\\
\Leftrightarrow \sqrt x + 3 = 3\left( {do:\sqrt x + 3 \ge 3} \right)\\
\Leftrightarrow \sqrt x = 0\\
\Leftrightarrow x = 0\left( {tmdk} \right)\\
Vậy\,x = 0
\end{array}$