`a)`
` a^2 + b^2 + c^3 + 3 = 2(a+b+c)`
`\to a^2 + b^2 + c^3 + 3 -2a -2b -2c= 0`
`\to (a^2 -2a+1)+(b^2 -2b+1) + (c^2 -2c+1) = 0`
`\to (a-1)^2 + (b-1)^2 + (c-1)^2=0`
Ta có ` (a-1)^2 \ge0;\ (b-1)^2 \ge0;\ (c-1)^2 \ge 0`
` \to (a-1)^2 + (b-1)^2 + (c-1)^2 \ge 0\ ∀ a,b,c`
Dấu ` =` xảy ra khi ` a= b = c = 1`
`\to` Đpcm
`b)`
` (a+b+c)^2 = 3(ab+bc+ac)`
`\to a^2+b^2 +c^2 +2ab +2bc +2ac = 3ab + 3bc +3ac`
`\to a^2 +b^2 +c^2 - ab - bc - ac = 0`
`\to 2a^2 +2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0`
`\to (a^2 -2ab + b^2)+(b^2 - 2bc + c^2)+(c^2 - 2ac +a^2) = 0`
`\to (a-b)^2 +(b-c)^2 + (a-c)^2 = 0`
`\to` $\begin{cases} a - b = 0 \\\\ b- c = 0 \\\\ c - a = 0 \end{cases}$
`\to a = b =c`
`\to` Đpcm
`c)`
` (a-b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c)^2 + (b+c -2a)^2 + (c+a-2b)^2`
`\to [ ( a-b)^2 - (a+b-2c)^2] + [ (b-c)^2 - (b+c -2a)^2] + [ (c-a)^2 - (c+a-2b)^2] = 0`
`\to (a-b+a+b-2c)(a-b-a-b+2c) + ( b-c+b+c-2a)(b-c-b-c+2a) + (c-a+c+a-2b)(c-a-c-a+2b) = 0`
`\to ( 2a -2c)(2c-2b) + ( 2b - 2a)(2a - 2c) + ( 2c - 2b)(2b - 2a) = 0`
`\to 2. [ (a-c)(c-b) + (b-a)(a-c) + (c-b)(b-a)] = 0`
`\to (a-c)(c-b) + (b-a)(a-c) + (c-b)(b-a) = 0`
`\to ac - ab - c^2 + bc + ab - bc - a^2 +ac + bc - ac - b^2 +ab = 0`
`\to (ac-ac+ac) + (ab-ab+ab) + (bc - bc+bc) - a^2 - b^2 - c^2 = 0`
`\to ab + ac + bc - a^2 - b^2 - c^2 = 0`
`\to a^2 + b^2 + c^2 - ab - ac - bc = 0`
`\to 2a^2 +2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0`
`\to (a^2 -2ab + b^2)+(b^2 - 2bc + c^2)+(c^2 - 2ac +a^2) = 0`
`\to (a-b)^2 +(b-c)^2 + (a-c)^2 = 0`
`\to` $\begin{cases} a - b = 0 \\\\ b- c = 0 \\\\ c - a = 0 \end{cases}$
`\to a = b =c`
`\to` Đpcm