Ta có: `xy . yz . xz = 1/3 . (-2/5) . (-3/10)`
`=> xyyzxz = 1/25`
`=>x^2y^2z^2 =1/25`
`=> (xyz)^2 = 1/25`
`=>` \(\left[ \begin{array}{l}xyz = \frac{1}{5}\\xyz= -\frac{1}{5}\end{array} \right.\)
+) Nếu `xyz= 1/5`
Mà `xy = 1/3`
`=> 1/3 z= 1/5`
`=> z= 1/5 : 1/3`
`=> z= 1/5 .3`
`=> z= 3/5`
`=> y= -2/5 : 3/5 = -2/5 . 5/3 = -2/3`
`=> x = 1/3 : (-2/3) = 1/3 . (-3/2) = -1/2`
+) Nếu `xyz= -1/5`
Mà `xy= 1/3`
`=> 1/3 z = -1/5`
`=> z= -1/5 : 1/3`
`=> z= -1/5. 3`
`=> z= -3/5`
`=> y= -2/5 : (-3/5)`
`=> y= -2/5 . (-5/3)`
`=>y= 2/3`
`=> x= 1/3 : 2/3`
`=> x= 1/3 . 3/2 = 1/2`
Vậy `x = -1/2; y= -2/3 ; z= 3/5` hoặc `x= 1/2 ; y =2/3 ; z= -3/5`