Đáp án:
\(\begin{array}{l}
g)x = \dfrac{5}{3}\\
d)A = \dfrac{{2a + 3}}{{ - b}}\\
M = 3x - 3\\
E = x - 3\\
F = 3x - 3
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
g)DK:4 \ge x \ge \dfrac{1}{2}\\
\sqrt {2x - 1} = \sqrt {4 - x} \\
\to 2x - 1 = 4 - x\\
\to 3x = 5\\
\to x = \dfrac{5}{3}\\
d)A = \sqrt {\dfrac{{{{\left( {3 + 2a} \right)}^2}}}{{{b^2}}}} \\
= \left| {\dfrac{{3 + 2a}}{b}} \right|\\
= \dfrac{{2a + 3}}{{ - b}}\\
M = \left| {x - 2} \right| + 2x - 1\\
= x - 2 + 2x - 1\\
= 3x - 3\\
E = \left| {3 - x} \right| = - \left( {3 - x} \right)\\
= x - 3\\
F = \sqrt {{{\left( {x - 3} \right)}^2}} + 2x\\
= \left| {x - 3} \right| + 2x\\
= x - 3 + 2x = 3x - 3
\end{array}\)